A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
نویسندگان
چکیده
Abstract. Although many multi-source precipitation products (MSPs) with high spatiotemporal resolution have been extensively used in water cycle research, they are still subject to various biases, including false alarm and missed bias. Precipitation merging technology is an effective means alleviate this uncertainty. However, how efficiently improve detection efficiency intensity simultaneously a problem worth exploring. This study presents two-step strategy based on machine learning (ML) algorithms, gradient boosting decision tree (GBDT), extreme (XGBoost), random forest (RF). It incorporates six state-of-the-art MSPs (GSMaP, IMERG, PERSIANN-CDR, CMORPH, CHIRPS, ERA5-Land) rain gauges the accuracy of identification estimation from 2000 2017 over China. Multiple environment variables spatial autocorrelation combined process. The first employs classification models identify wet dry days then combines regression predict amounts classified days. merged results compared traditional methods, multiple linear (MLR), ML models, gauge-based Kriging interpolation. A total 1680 (70 %) randomly chosen for model training 692 (30 performance evaluation. show that (1) (MSMPs) outperformed all original terms statistical categorical metrics, which substantially alleviates temporal biases. modified Kling–Gupta (KGE), critical success index (CSI), Heidke Skill Score (HSS) improved by 15 %–85 %, 17 %–155 21 %–166 respectively. (2) plays significant role merging, considerably improves accuracy. (3) MSMPs obtained proposed method superior MLR, interpolation, models. XGBoost algorithm recommended more large-scale data owing its computational efficiency. (4) performs better when higher-density training. it has strong robustness can also obtain than even gauge number reduced 10 % (237). provides accurate reliable under complex climatic topographic conditions. could be applied other areas well if available.
منابع مشابه
development and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولReconstructing Satellite-Based Monthly Precipitation over Northeast China Using Machine Learning Algorithms
Attaining accurate precipitation data is critical to understanding land surface processes and global climate change. The development of satellite sensors and remote sensing technology has resulted in multi-source precipitation datasets that provide reliable estimates of precipitation over un-gauged areas. However, gaps exist over high latitude areas due to the limited spatial extent of several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hydrology and Earth System Sciences
سال: 2022
ISSN: ['1607-7938', '1027-5606']
DOI: https://doi.org/10.5194/hess-26-2969-2022